Online adaptation for humanoids walking on uncertain surfaces

نویسندگان

  • Majid Khadiv
  • S. Ali A. Moosavian
  • Aghil Yousefi-Koma
  • Hessam Maleki
  • Majid Sadedel
چکیده

In this paper, an online adaptation algorithm for bipedal walking on uneven surfaces with height uncertainty is proposed. In order to generate walking patterns on flat terrains, the trajectories in the task space are planned to satisfy the dynamic balance and slippage avoidance constraints, and also to guarantee smooth landing of the swing foot. To ensure smooth landing of the swing foot on surfaces with height uncertainty, the preplanned trajectories in the task space should be adapted. The proposed adaptation algorithm consists of two stages. In the first stage, once the swing foot reaches its maximum height, the supervisory control is initiated until the touch is detected. After the detection, the trajectories in the task space are modified to guarantee smooth landing. In the second stage, this modification is preserved during the Double Support Phase (DSP), and released in the next Single Support Phase (SSP). Effectiveness of the proposed online adaptation algorithm is experimentally verified through realization of the walking patterns on the SURENA III humanoid robot, designed and fabricated at CAST. The walking is tested on a surface with various flat obstacles, where the swing foot is prone to either land on the ground soon or late.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Humanoids' Walking Skills through Morphogenesis Evolution Method

This paper presents an evolution method used to modify the morphology of humanoids to make them more efficient in a specific direction of walking. Starting from the NAO’s model used in the 3D Simulation Soccer League, the walking specializations are based on 5 to 8 parameters that are being evolved. A black-box optimization process is run and guided by a decision-making function that defines th...

متن کامل

Tracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit

Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...

متن کامل

Tracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit

Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...

متن کامل

Compliant ankles and flat feet for improved self-stabilization and passive dynamics of the biped robot "RunBot"

Biomechanical studies of human walking reveal that compliance plays an important role at least in natural and smooth motions as well as for self-stabilization. Inspired by this, we present here the development of a new lower leg segment of the dynamic biped robot “RunBot”. This new lower leg segment features a compliant ankle connected to a flat foot. It is mainly employed to realize robust sel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Systems & Control Engineering

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2017